56 research outputs found

    Harmonics Mitigation in Cascaded Multilevel PV Inverters During Power Imbalance Between Cells

    Get PDF
    This paper presents a grid connected multilevel topology for photovoltaic (PV) systems. Usually, multilevel converters for PV application suffer from a distorted output current and voltage when the submodules are not subjected to an even solar irradiance. The difference in submodules irradiance results in different submodules duty cycles when maintaining the maximum power point tracking (MPPT). The distortion of the output current is proportional with the difference of the cells duty cycles. To this regard, a multilevel topology for PV applications is proposed along with a control and modulation strategy. In this proposed topology, H6 bridge-based cell is used instead of an H-bridge one. In case of solar irradiance mismatch, the proposed converter injects power with less voltage from the shaded cells without altering the PV voltage, and hence, the MPPT. This modification allows retaining a tantamount duty cycle in all cells whatever the meteorological conditions are present. To test the effectiveness of the proposed idea, a detailed simulation model was set up. The results show that the proposed concept provides a significantly improved output current quality compared to the cascaded H-bridge topology

    A Low-Computational High-Performance Model Predictive Control of Single Phase Battery Assisted Quasi Z-Source PV Inverters

    Get PDF
    Impedance network inverters are a good alternative for voltage-source and current-source inverters. The shoot-through solution and the boosting capability of such converters make them an excellent solution for photovoltaic (PV) application. Furthermore, energy storage integration in these inverters does not require any additional components in the converter; indeed, a battery can be directly connected in parallel with one of the capacitors of the Z- or quasi Z-network. However, for an optimal control of these converters, complex control and modulation strategies are required. Model Predictive Control (MPC) provides high control performance at the expense of the computational effort. In this paper, a low computational control method where both MPC and proportional resonant (PR) controller are combined, is proposed. This makes the proposed controller perform two iterations only instead of iterating for all the available switching states. As shown in the obtained results, the proposed controller conserves the high performance of the conventional MPC with 50% less computational burden

    Accurate Reactive Power Sharing Strategy for Droop-based Islanded AC Microgrids

    Get PDF

    On Improved PSO and Neural Network P&O Methods for PV System under Shading and Various Atmospheric Conditions

    Get PDF
    This article analyzes and compares the integration of two different maximum power point tracking (MPPT) control methods, which are tested under partial shading and fast ramp conditions. These MPPT methods are designed by Improved Particle Swarm Optimization (IPSO) and a combination technique between a Neural Network and the Perturb and Observe method (NN-P&amp;O). These two methods are implemented and simulated for photovoltaic systems (PV), where various system responses, such as voltage and power, are obtained. The MPPT techniques were simulated using the MATLAB/Simulink environment. A comparison of the performance of the IPSO and NN-P&amp;O algorithms is carried out to confirm the best accomplishment of the two methods in terms of speed, accuracy, and simplicity.</p

    Innovative Grid-Connected Photovoltaic Systems Control Based on Complex-Vector-Filter

    Get PDF
    The research presented in this paper explains how the complex-vector-filter (CVF) method can help in minimizing the current harmonic of a grid-tied photovoltaic system. In fact, the harmonic-free positive sequence (HFPS) load current is used to produce referential sinusoidal currents. This control stabilizes the grid’s currents under unbalanced load currents, as well as mitigates undesirable harmonic load currents, while feeding clean active power to the grid. Thanks to the proposed controller, the performance, such as robustness, as well as the stability and dynamics of the CVF are more effective compared to the proportional-integral (PI) with phase-locked-loop (PLL) controller. Moreover, the CVF ensures robustness and stability during the synchronization between the photovoltaic (PV) generator and the utility grid system. The PI&PLL control presents higher active and reactive power fluctuations during synchronization. On the other hand, the CVF ensures the elimination of the reactive power fluctuations during synchronization. The performance of the proposed CVF is validated by simulation through MATLAB software. Under all conditions, the grid current, considering harmonics, is within the limits set by the IEEE-519 power quality standard, where a total harmonic distortion (THD) of 1.56% was achieved in the case of feeding a non-linear load

    Anti-Windup FOPID-Based DPC for SAPF Interconnected to a PV System Tuned Using PSO Algorithm

    Get PDF
    • …
    corecore